Log In   |   Sign up

New User Registration

Article / Abstract Submission
Register here
Register
Press Release Submission
Register here
Register
coolingZONE Supplier
Register here
Register

Existing User


            Forgot your password
John O | January 2019

Scientists create first on-chip optical link to connect two parts of electronics chip


By Josh Perry, Editor
jperry@coolingzone.com

 

Scientists at the University of Twente (Netherlands) have created the first on-chip optical link to connect two parts of an electronics chip through a novel optocoupler circuit that can be integrated using standard chip technology (CMOS).

 


New research demonstrated the possibility of connecting parts of a chip through optical links. (University of Twente/Vimeo)

 

The optocoupler, according to a report from the university, is only 0.008 square millimeters in size and delivers a MB of data per second with minimal energy consumption.

 

This breakthrough was based on previous research at the university that demonstrated that a silicon LED on a chip “the wrong way” to create an “avalanche” that results in the emission of visible light. “In the same way, a light detector can be made at which a single photon can induce an avalanche,” the report explained. “The result: an efficient optical connection.”

 

Once that principle was proven effective, the researchers had to optimize energy consumption, speed, and space while also working through new details such as the voltage needed for the light detector and where to position the detector for highest efficiency.

 

The abstract from the Ph.D thesis stated:

 

“The principle of data communication with light across isolated voltage domains is used in so-called 'optocouplers'. In optocouplers, light emitted by an emitter in one voltage domain is detected by a receiver in another voltage domain.

 

“At present, only discrete optocouplers are available; however a discrete implementation increases the cost for PICs. Monolithic implementation of optocouplers without any additional processing (standard CMOS) would be a disruptive technology, enabling several new 'smart' PICs at lower cost and area requirements. Research on enabling these integrated optocouplers has been the focus of this research.

 

“The main issue with the monolithic implementation of optocouplers is the absence of an efficient light source in CMOS technologies. Being an indirect band gap semiconductor, forward biased Si light-emitting diodes (LEDs) emit light at infrared wavelengths with low efficiency, while Si photodetectors (PDs) have a relatively low responsivity at those wavelengths. However, Si avalanche mode LEDs (AMLEDs) have a broad emission spectrum in the visible range which has a significant overlap with the responsivity of Si PDs.

 

“Therefore, in this thesis, the use of AMLEDs is proposed for the monolithic implementation of optocouplers. Another issue however is that Si AMLEDs have a relatively low electrical to optical efficiency, also referred to as quantum efficiency. To compensate for such a low quantum efficiency, single-photon avalanche diodes (SPADs) in CMOS technologies are proposed for the light detection side.

 

“In this research, firstly the physics of avalanche diodes is discussed in detail which is important to understand the performance of AMLEDs and SPADs. Further, AMLEDs with integrated driver circuits were designed in a 140 nm SOI CMOS technology. A low power LED driver circuit was demonstrated which is robust to many variations in the properties of the AMLEDs and the driver circuit operating conditions. The demonstrated integrated optical transmitter can be used to achieve a low energy-per-bit for the proposed optical links. Finally, for the first time, this research demonstrates a monolithic optical link with very low area requirements (< 0.01 mm2) in a standard CMOS technology. The data rates of a few Mbps at the energy consumption of a few nJ/bit are demonstrated.

 

“Overall this research demonstrates the physics and applications of avalanche diodes for optocoupling applications. Various physics related issues of avalanche diodes are also discussed which are important for the design of AMLEDs, SPADs and the associated circuits. The results are promising and the dream of monolithic optocouplers is now closer to reality!”

 

Learn more in the video below:

Choose category and click GO to search for thermal solutions

 
 

Subscribe to Qpedia

a subscription to qpedia monthly thermal magazine from the media partner advanced thermal solutions, inc. (ats)  will give you the most comprehensive and up-to-date source of information about the thermal management of electronics

subscribe

Submit Article

if you have a technical article, and would like it to be published on coolingzone
please send your article in word format to articles@coolingzone.com or upload it here

Subscribe to coolingZONE

Submit Press Release

if you have a press release and would like it to be published on coolingzone please upload your pr  here

Member Login

Supplier's Directory

Search coolingZONE's Supplier Directory
GO
become a coolingzone supplier

list your company in the coolingzone supplier directory

suppliers log in

Media Partner, Qpedia

qpedia_158_120






Heat Transfer Calculators