Log In   |   Sign up

New User Registration

Article / Abstract Submission
Register here
Register
Press Release Submission
Register here
Register
coolingZONE Supplier
Register here
Register

Existing User


            Forgot your password
March 2013

First graphene-based additive for lithium-ion batteries


cabot corp has announced the launch of litx™ g700, the company's first graphene-based additive for high energy density lithium-ion battery applications. utilizing graphene material developed on the basis of a new technology platform, this new additive helps lithium-ion battery manufacturers achieve superior cell performance.

 

battery developers for applications in electronics and electric vehicles have reached the limit in reducing the loadings of conventional carbon additives. as a result, many are resorting to alternatives such as carbon nanotubes that add significant cost as well as manufacturing challenges.

 

the litx g700 conductive additive is a graphene-based additive designed for use in electric vehicle and high-end consumer electronics in which better driving range and longer run times are critical performance features. this new additive is designed to deliver the conductivity needed to achieve very high energy densities in lithium-ion batteries at ultra-low loadings in comparison to conventional additives. less loading or volume allocated to conductive additives enables more volume to be available for energy storage materials. as a result, the litx g700 graphene-based additive delivers step change performance in conductivity at ultra-low loadings and is easily incorporated into battery electrodes.

 

"cabot is committed to becoming the key performance additives supplier to the lithium-ion battery industry," said gregg smith, general manager, cabot energy materials. "our new graphene-based additive is bringing a new leading-edge material to the market. we have been working closely with our customers to help deliver solutions that will increase and extend the performance of their current and next generation battery cells."

 

graphene is a thin sheet of carbon atoms that has high electrical and thermal conductivity, and is mechanically strong. it is used as a performance-enhancing material in composites to add strength, stability, electrical and thermal conductivity, and other properties at lower loading levels than traditional materials. its unique shape and structure provide different application opportunities from standard carbon additives. specifically, graphene's unique properties help to balance the overall electronic and ionic conductivity of lithium-ion battery cells that could not be achieved with other carbon additives.

 

"we recognize that graphenes have the potential to improve performance in a number of applications from advanced batteries to conductive plastics and tires. we see it also leading to new, stronger composite materials," said yakov kutsovsky, chief technology officer. "cabot has made and continues to make investments in graphene technology. this enables us to have a robust platform capability in which to test and further develop graphene materials."

 

for more information or to inquire further see:  http://www.cabot-corp.com/

Choose category and click GO to search for thermal solutions

 
 

Subscribe to Qpedia

a subscription to qpedia monthly thermal magazine from the media partner advanced thermal solutions, inc. (ats)  will give you the most comprehensive and up-to-date source of information about the thermal management of electronics

subscribe

Submit Article

if you have a technical article, and would like it to be published on coolingzone
please send your article in word format to [email protected] or upload it here

Subscribe to coolingZONE

Submit Press Release

if you have a press release and would like it to be published on coolingzone please upload your pr  here

Member Login

Supplier's Directory

Search coolingZONE's Supplier Directory
GO
become a coolingzone supplier

list your company in the coolingzone supplier directory

suppliers log in

Media Partner, Qpedia

qpedia_158_120






Heat Transfer Calculators